163 research outputs found

    Predicting the distributions of under-recorded Odonata using species distribution models

    Get PDF
    1. Absences in distributional data may result either from the true absence of a species or from a false absence due to lack of recording effort. I use general linear models (GLMs) and species distribution models (SDMs) to investigate this problem in North American Odonata and present a potential solution. 2. I use multi-model selection methods based on Akaike's information criterion to evaluate the ability of water-energy variables, human population density, and recording effort to explain patterns of odonate diversity in the USA and Canada using GLMs. Water-energy variables explain a large proportion of the variance in odonate diversity, but the residuals of these models are significantly related to recorder effort. 3. I then create SDMs for 176species that are found solely in the USA and Canada using model averaging of eight different methods. These give predictions of hypothetical true distributions of each of the 176species based on climate variables, which I compare with observed distributions to identify areas where potential under-recording may occur. 4. Under-recording appears to be highest in northern Canada, Alaska, and Quebec, as well as the interior of the USA. The proportion of predicted species that have been observed is related to recorder effort and population density. Maps for individual species have been made available online () to facilitate recording in the future. 5. This analysis has illustrated a problem with current odonate recording in the form of unbalanced recorder effort. However, the SDM approach also provides the solution, targeting recorder effort in such a way as to maximise returns from limited resources

    Parity-violating longitudinal response

    Get PDF
    The longitudinal quasielastic parity-violating electron scattering response is explored within the context of a model that builds antisymmetrized RPA-HF correlations on a relativistic Fermi gas basis. The large sensitivity to nuclear dynamics of this observable, found in previous studies where only pionic correlations were included, is shown to survive in the present model where the effects from pion, rho, sigma and omega exchange in a version of the Bonn potential are incorporated. Through an intricate diagrammatic cancellation/filtration mechanism the longitudinal parity-violating response turns out to be close to the one obtained in first-order perturbation theory with the pion alone. Finally, in accord with our previous work, the parity-violating response is seen to display appreciable sensitivity to the electric strangeness content of the nucleon, especially at high momentum transfer.Comment: 13 pages, uses REVTeX and epsfig, 10 postscript figures; a postscript version of the paper is available by anonymous ftp at ftp://carmen.to.infn.it/pub/barbaro/papers/951

    Parity-Violating Electron Scattering from the Pion-Correlated Relativistic Fermi Gas

    Get PDF
    Parity-violating quasielastic electron scattering is studied within the context of the relativistic Fermi gas and its extensions to include the effects of pionic correlations and meson-exchange currents. The work builds on previous studies using the same model; here the part of the parity-violating asymmetry that contains axial-vector hadronic currents is developed in detail using those previous studies and a link is provided to the transverse vector-isovector response. Various integrated observables are constructed from the differential asymmetry. These include an asymmetry averaged over the quasielastic peak, as well as the difference of the asymmetry integrated to the left and right of the peak -- the latter is shown to be optimal for bringing out the nature of the pionic correlations. Special weighted integrals involving the differential asymmetry and electromagnetic cross section, based on the concepts of y-scaling and sum rules, are constructed and shown to be suited to studies of the single-nucleon form factor content in the problem, in particular, to determinations of the isovector/axial-vector and electric strangeness form factors. Comparisons are also made with recent predictions made on the basis of relativistic mean-field theory.Comment: 28 pages, LATeX, 13 figures (tar-compressed postscript files, available from the authors), MIT preprint CTP#222

    Influence of nucleonic motion in Relativistic Fermi Gas inclusive responses

    Get PDF
    Impulsive hadronic descriptions of electroweak processes in nuclei involve two distinctly different elements: one stems from the nuclear many-body physics --- the medium --- which is rather similar for the various inclusive response functions, and the other embodies the responses of the hadrons themselves to the electroweak probe and varies with the channel selected. In this letter we investigate within the context of the relativistic Fermi gas in both the quasi-elastic and N→ΔN\to\Delta regimes the interplay between these two elements. Specifically, we focus on expansions in the one small parameter in the problem, namely, the momentum of a nucleon in the initial wave function compared with the hadronic scale, the nucleon mass. Both parity-conserving and -violating inclusive responses are studied and the interplay between longitudinal (LL) and transverse (TT and T′T') contributions is highlighted.Comment: 11 pages, 1 figur

    Spin Observables in Coincidence Electron Scattering from Nuclei I: Reduced Response Functions

    Get PDF
    A theoretical description of nucleon knockout reactions initiated by polarized electron scattering from polarized nuclei is presented. Explicit expressions for the complete set of reduced response functions (independent of the polarization angle) that can be experimentally obtained assuming plane waves for the electron are given in a general multipole expansion. The formalism is applied to the particular case of closed-shell-minus-one nuclei using two models for the ejected nucleon, including the final-state interaction phenomenologically with a complex optical potential and in the factorized plane-wave impulse approximation. Relativistic effects in the kinematics and in the electromagnetic current are incorporated throughout --- specifically a new expansion of the electromagnetic current in powers only of the struck nucleon momentum is employed. Results are presented for the nucleus 39K.Comment: 51 pages (LaTeX), 17 figures (postScript

    Superscaling and Charge-changing Neutrino Cross Sections

    Full text link
    The superscaling function extracted from inclusive electron scattering data is used to predict high energy charge-changing neutrino cross sections in the quasi-elastic and Δ\Delta regions.Comment: 3 pages, 2 figures, to appear in the Proceedings of the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Frascati (Rome), June 21 - 26, 200

    Nuclear response functions for the N-N*(1440) transition

    Full text link
    Parity-conserving and -violating response functions are computed for the inclusive electroexcitation of the N*(1440)(Roper) resonance in nuclear matter modeled as a relativistic Fermi gas. Using various empirical parameterizations and theoretical models of the N-N*(1440) transition form factors, the sensitivity of the response functions to details of the structure of the Roper resonance is investigated. The possibility of disentangling this resonance from the contribution of Delta electroproduction in nuclei is addressed. Finally, the contributions of the Roper resonance to the longitudinal scaling function and to the Coulomb sum rule are also explored.Comment: 25 pages, 10 figures. Minor changes in the Introduction. Accepted in NP

    The 2p-2h electromagnetic response in the quasielastic peak and beyond

    Get PDF
    The contribution to the nuclear transverse response function R_T arising from two particle-two hole (2p-2h) states excited through the action of electromagnetic meson exchange currents (MEC) is computed in a fully relativistic framework. The MEC considered are those carried by the pion and by Delta degrees of freedom, the latter being viewed as a virtual nucleonic resonance. The calculation is performed in the relativistic Fermi gas model in which Lorentz covariance can be maintained. All 2p-2h many-body diagrams containing two pionic lines that contribute to R_T are taken into account and the relative impact of the various components of the MEC on R_T is addressed. The non-relativistic limit of the MEC contributions is also discussed and compared with the relativistic results to explore the role played by relativity in obtaining the 2p-2h nuclear response.Comment: 27 pages, 12 figures, revtex4; minor modifications in the discussion of the results, references adde

    The Pion in Electromagnetic and Weak Neutral Current Nuclear Response Functions

    Get PDF
    The impact of pionic correlations and meson--exchange currents in determining the (vector) response functions for electroweak quasielastic lepton scattering from nuclei is discussed. The approach taken builds on previous work where the Fermi gas model is used to maintain consistency in treating forces and currents (gauge invariance) and to provide a Lorentz covariant framework. Results obtained in first-order perturbation theory are compared with infinite-order summation schemes (HF and RPA) and found to provide quite successful approximations for the quasielastic response functions. The role of pionic correlations in hardening the responses R_L and R_T is investigated in some detail, including studies of the relative importance of central and tensor pieces of the force and of exchange and self-energy diagrams; in addition, their role in significantly modifying the longitudinal parity-violating response R_{AV}^L is explored. The MEC are shown to provide a small, but non-negligible, contribution in determining the vector responses.Comment: TeX, 21 figures (Postscript, available from the authors), MIT preprint CTP\#219

    Inclusive quasielastic scattering of polarized electrons from polarized nuclei

    Full text link
    The inclusive quasielastic response functions that appear in the scattering of polarized electrons from polarized nuclei are computed and analyzed for several closed-shell-minus-one nuclei with special attention paid to 39K. Results are presented using two models for the ejected nucleon --- when described by a distorted wave in the continuum shell model or by a plane wave in PWIA with on- and off-shell nucleons. Relativistic effects in kinematics and in the electromagnetic current have been incorporated throughout. Specifically, the recently obtained expansion of the electromagnetic current in powers only of the struck nucleon's momentum is employed for the on-shell current and the effects of the first-order terms (spin-orbit and convection) are compared with the zeroth-order (charge and magnetization) contributions. The use of polarized inclusive quasielastic electron scattering as a tool for determining near-valence nucleon momentum distributions is discussed.Comment: 51 LaTeX pages, 14 Postscript figure
    • …
    corecore